LYSSNA PA DET HAR DA L UAG HARJIU BORIAT FICK DL UNDERKANT PAKURSEN 08 ELLERT

MATIE I NAR SKA MAN HA NYTTA AV DET

HAN FICKTYP PLOCKA FRAM RAKNERAY

& N 30-ANWMERARKURS PR KTH,OUOFTAR |
GANSKA MYCKET MATTE 1 0ET DAR, SA LARARN
GAV 055 €T DIAGNOSISKT PROV | MATTE, 0CH
SAGFICK ETTRATTAV SUUTIO/

NEJ, OET VAR BARA FOR ATTHAMVILLE SE
VILREN NIVA W VAR P4 OCR M HANSKULLE

KUNNA BOPPA OVER OF GRUNTLAGLANDE
GREJERNA, 0eH GET KUNCE HAN INTE ¢

OCH APOLEN ! L LWET EGENTLIGEN?

JAG ERTIATE INGENTING ! 02 BARA "vAQ
AR ROTEN URCET HAR " VADA ROTEN?

TIAR, 1WA G TILLEXEMPEL. !

HAHA HAHAHA!

-

"uAD AR KVADRATEN AU DETHAR?
VADA KVADRATEN?

NN

“
w 25

sz Y

Vectors and Transforms

In
3D Graphics

Course Structure

* 14 lectures
— Book i1s the verbal format / more meticulous explanations

— Lecture slides are only short summary
* Perhaps not enough to fully understand

— Exam (salstentamen):
» I will only assume that you have studied the topics covered by the slides.
» Reading instructions are pointers to more verbal descriptions in the book

» May come a few “harder” questions, intended to force you to think beyond
what’s in the slides (and that could of course accidentally be covered by the

book).

« Tutorials — the practical experience

— 1-6 “holds your hand”. Very fast. Intentionally lots of copy/paste.
Do them in 2-3 weeks. No need to wait for their deadlines.
— Project — Here, you apply the knowledge from tutorial 1-6, so you

must have understood them.
* You will need the 3-4 weeks for the project.

The Bonus Material

* Bonus material on home page

— Purpose: only to be of help in case lectures and course
book 1s not enough for you to understand. Sometimes, it
helps having same topics explained in a second way.

— Skip the bonus material if you are not very interested.

— No exam questions on bonus material!

Quick Repetition of Vector Algebra

* Scalar and Vector
Quantities. Physical quan-
tities such as temperature, T,
distance, s, density, p, work, W,
etc., that can be fully described
by a single number are called
scalars. Scalars are not associ-
ated with any direction. Physi-
cal quantities that have both
magnitude and direction are
called vectors, e.g, force, F, ve-
locity, ¥, acceleration, a. mo-
mentum, P, etc.

*Coordinate Systems. A
vector, ¥, can be described in
reference to a coordinate sys-
tem. Two-dimensional coordi-
nate systems can be cartesian or
polar. Three-dimensional coor-
dinate systems can be cartesian,
cylindrical or spherical.

E———
DEFINITIONS

B TWO-

DIMENSIONAL
! (2-D) COORDINATE
il SYSTEMS

~ + Cartesian Coordinates (x.y).
~ A vector, ¥, in a 2-D cartesian coordi-
| nate system can be written as:

| VL)V,

"H where ¥,, ¥, are the vector compo-
. nents, and i, j arc the unit vectors

~ along the x and y axis respectively.

| The magnitude of the vector, |V,

i 1S

A [Y={¥:2+¥;?

« Polar Coordinates (,6).

,‘J A vector, V, in polar coordinates can
. be written

V=V(%,0), where:
i ¥, =\[V? +¥,2 and

i

v,
| O=tan-1(—L)
] Ve
“*Relation Between

| Cartesian and Polar
" Coordinates:

V.=|Vcos® ¥, =|V]sin0

v=tan”' (4)

q 2-D Cartesian
Coordinate
System

2-D Polar
Coordinate
System

DIMENSIONAL (3-D)
COORDINATE
SYSTEMS:
Cartesian Coordinates
(x,5,2). A vector, ¥, in a 3-D
cartesian coordinate system can be

written as:

14 =1f 241,242

V=V (Ve Vy Vo) =Vii+V, j+Vk

3-D
Cartesian
Coordinates

* Cylindrical Coordinates (,
6,2). Avector, ¥, ina drical ¢t

VECTOR
ALGEBRA

* Vector Addition. The sum of two
vectors, ¥, and ¥, ina 2-D cartesian
coordinate system is a vector, Vg,
defined as:

Ve=V Vs
In component notation, the summa-
tion is given as:

Vex =Vax+Vx , Vay =Vay +Vey

* Right-hand rule: the direc-
tion of the vector e can be found
by curling the fingers of the right
hand around a hypothetical axis
perpendicular to plane ¥ , - ¥ g so
that the vector ¥, rotates along the
angle o until is aligned with vec-
tor ¥ g The thumb then gives the
direction of ¢ .

Yﬂ!’sﬁ Ngml;uHAndmd

Vector Addition

0-

ordinate system can be written

V=V(¥,,8,3), where
V=242 and 2=

Cylindrical ¥

* Spherical Coordinates (6.¢).
A vector, ¥, ina spherical coordinate sys-
tem is written as:V=V(V;,0,9),
where:
Vo=l 7417,
v,
O=tan”'(L)

“

V.

¢=cos-1
v+

* Relation Between Cartesian
and Spherical Coordinates
V,=|Vsin¢cos 6,
Vy=|V]singsin6 ,
Ve={Vicos$
x=rsingcos v
¥ = rsin¢sin
2=rcosd

Vector Addition:
Vitly= Vgt

* Associative Law of Vector

Addition:

WV V)V =V (Vg +V)

* Distributive Law for
Multiplication by a Scalar (€):

eV +V,

where o is the angle between the two
vectors. If the two vectors are perpen-
dicular to each other then:

Y. ValVs
If the vectors are given in terms of

their components, then in a 3-D
cartesian coordinate system:

- V‘/\' VIIX H VJ ‘3 VHY + VAZVMZ

* Vector or Cross Product

VxVy= V| Vel (sina)e
where e is the unit vector perpen-
dicular to the plane formed by
vectors ¥V, and ¥V 5.

VxX¥g=Vg¥,
A cartesian coordinate system is called
a right-handed system if i x j = k.
Iftwo vectors are parallel to each then:
YuxVy=0 Y, |Vy
If the vectors are given in terms
their components, then in a 3-
cartesian coordinate system:

e

=4

i j ok

VxVg={Vax Var Vaz

Vax Var Vaz

v,«v, Vector Product
AREA=VAVE sin o0
Vi

* Triple Scalar Product
The magnitude of the e scalar
product is equal to the volume of the
parallelepiped formed by the three
vectors ¥y, Vg, Ve o ¥ o(VpxVo).

Triple Scalar Product

* Differentiation Formulas
of Vectors
du _dv

d u
E[E(')*Z(')]Zy*;

a du
lenl=e

d A du
El/(')ﬂ(‘)]“;;ﬂ*f;

a)42
OO veyrule)-
« Integration of a Vector

fr(0)ar={)] ~2()-R(a)

NSOV

N IO W

Excellent interactive online linear
algebra repetition:

4.8

||“|| = 1.00 uxv
vl = 1.00

sin[u, v] = 1.00

luxv| =1.00

Structure

e Matrices

Matrix mult.

Transformation Pipeline
Practical usage

Rotations

Translations

Homogeneous coordinates
Shear / scale / normal matrix
Euler matrices

Quaternions

Projections

e Bresenham’s line drawing algorithm

Why transforms?

e \We want to be able to animate objects
and the camera
- Translations
- Rotations
- Shears

e \We want to be able to use projection
transforms

How implement transforms?

e Matrices!

e Can you really do everything with a
matrix?

e Not everything, but a lot!
e \We use 3x3 and 4x4 matrices

Matrix multiplication

Moy My Mgy | Py My P, My P, TNy, P,
my, my My | p,|=|Myp, Tm,p,+m;,p,

My My \ P, My Py TMy P, Ty P,

b1z b13
bz b23

b2 b3

a21.b11+ a22.b21 + aZ3.631 a21.b12 + a22.b22 + a23.632 a21.b13 + a22.b83 + a23.633

¥ _al1bl1+a12.b21+a13.631 al1l.b12+ a12.b22 + a13. 632 allb13+ 212,623 + 213.633)

a31.b11+ a32.621 + a33.631 a31.b12 + a32.b82 + a33.632 a31.b13 + a32.b23 + a33.633

Matrix multiplication

a21.b11+ a22.b21 + aZ3.631 a21.b12 + a22.b22 + a23.632 a21.b13 + a22.b83 + a23.633

(a11.b11+ a12.b21+ a13.631 a11.b12 + a12.b22 + a13. 632 allb13+ 212,623 + 213.633)

a31.b11+ a32.621 + a33.631 a31.b12 + a32.b82 + a33.632 a31.b13 + a32.b23 + a33.633

Matrix multiplication

Moy My Mgy | Py My P, My P, TNy, P,
my, my My | p,|=|Myp, Tm,p,+m;,p,

My, My My \ P, My Py TMy P, Ty P,

a21.b11+ a22.b21 + aZ3.631 a21.b12 + a22.b22 + a23.632 a21.b13 + a22.b83 + a23.633

(a11.b11+ a12.b21+ a13.631 all.b12+ al12.b22 + a13. 632 a11.b13+ 212,623 + 213.633

a31.b11+ a32.621 + a33.631 a31.b12 + a32.b82 + a33.632 a31.b13 + a32.b23 + a33.633

Matrix multiplication

my,
m

m,

alz a

13
azZ3

a11.b11+ a12.b21+ a13.631

¢ a21.b11+ a22.b21 + aZ3.631

a31.b11+ a32.b21 + a33.631

my,
m

my,

my,
m,

m,

=

all.b12+ al12.b22 + a13. 632
a21.b12 + a22.b22 + a23.632

a31.b12 + a32.b82 + a33.632

P
Py
P:

b1z b13
bz b23

b2 b3

allb13+ 212,623 + 213.633
a21.b13 + a22.b83 + a23.633

a31.b13 + a32.b23 + a33.633

My P, My P, TNy, P,
myyp, +myp, +m;,p,

My Py TMy P, Ty P,

)

Matrix multiplication

My, || Px My P, My P, TNy, P,

Py |=| My, Ty P, +mpp,

a11.b11+ a12.b21+ a13.631 all.b12+ al12.b22 + a13. 632 allb13+ 212,623 + 213.633
a21.b11+ a22.b21 + aZ3.631 a21.b12 + a22.b22 + a23.632 a21.b13 + a22.b83 + a23.633)

a31.b11+ a32.621 + a33.631 a31.b12 + a32.b82 + a33.632 a31.b13 + a32.b23 + a33.633

Matrix multiplication

Moy My Mgy | Py My P, My P, TNy, P,
my, my My | p,|=|Myp, Tm,p,+m;,p,

My, My My \ P, My Py TMy P, Ty P,

alz al3 b11 b12 b13
a aZ3 | >
aZe a33

a21.b11+ a22.b21 + aZ3.631 a21.b12 + a22.b22 + a23.632 a21.b13 + a22.b83 + a23.633

a11.b11+ a12.b21+ a13.631 all.b12+ al12.b22 + a13. 632 allb13+ 212,623 + 213.633
a31.b11+ a32.621 + a33.631 a31.b12 + a32.b82 + a33.632 a31.b13 + a32.b23 + a33.633

Matrix multiplication

My, || Px My P, My P, TNy, P,
Py |=| My, Ty P, +mpp,

My Py TMy P, Ty P,

a21.b11+ a22.b21 + aZ3.631 a21.b12 + a22.b22 + a23.632 a21.b13 + a22.b83 + a23.633

a11.b11+ a12.b21+ a13.631 all.b12+ al12.b22 + a13. 632 allb13+ 212,623 + 213.633)

QR 231.b11+ a32.b21 + a33.631 a31.b12 + a32.b82 + a33.632 a31.b13 + a32.b23 + a33.633

Matrix multiplication

Moy My Mgy | Py My P, My P, TNy, P,
my, my My | p,|=|Myp, Tm,p,+m;,p,

My, My My \ P, My Py TMy P, Ty P,

all a

a2 azz2 azZ3

TN\ a3t e am J O

a11.b11+ a12.b21+ a13.631 all.b12+ al12.b22 + a13. 632 allb13+ 212,623 + 213.633
a21.b11+ a22.b21 + aZ3.631 a21.b12 + a22.b22 + a23.632 a21.b13 + a22.b83 + a23.633)

a31.b11+ a32.621 + a33.631 a31.b12 + a32.b82 + a33.632 a31.b13 + a32.b23 + a33.633

Matrix multiplication

Moy My Mgy | Py My P, My P, TNy, P,
my, my My | p,|=|Myp, Tm,p,+m;,p,

My, My My \ P, My Py TMy P, Ty P,

a21.b11+ a22.b21 + aZ3.631 a21.b12 + a22.b22 + a23.632 a21.b13 + a22.b83 + a23.633

(a11.b11+ a12.b21+ a13.631 all.b12+ al12.b22 + a13. 632 allb13+ 212,623 + 213.633

a31.b11+ a32.621 + a33.631 a31.b12 + a32.b82 + a33.632 a31.b13+ a32.b23 + a33.633

Word space

Model space A
World space

View space

ModelViewMtx = "Model to View
Matrix”

ModelViewMtx * v =

*

(Mvew *Myem) ™V

View space

Model space |

World space

ModelViewMtx = "Model to View Matrix” ! fF .s

ModelViewMtx * v = (Myew " Mpyem) ™ vV

Full projection:
Vaip_space = ProjectionMatrix * ModelViewMatrix * Vi, qei space

H . — *
Or SlmPIY' Velip_space — IVIMVP v

Transformation

Pipeline
clip space
oltject eye (normalized window
shace space device coords) coords
.
: |Modelview| |Projection |_|Perspective _| Viewport |
g Matrix Matrix Division Transform
X

Done by the vertex shader:

gl_Position = modelViewProjectionMatrix*vec4(vertex,1);

OpenGL | Geometry stage | done on GPU

The OpenGL Pipeline

Blending Rixellownership

Y o ¢

e T ——

SCISSOn

From http://deltronslair.com/glpipe.html

How do | use transforms
practically?

e Say you have a circle with origin at (0,0,0) and with
radius 1, i.e., a unit circle

e mat4d m = translate({8,0,0}); // create translation matrix
® RenderCircle (m) ; // Draw circle using m as

// model-to-world matrix

@ matd s = scale({2,2,2}); // create scaling matrix
e mat4d t = translate({3,2,0}); // createtranslation matrix
® RenderCircle(t*s); // use matrix (t*s)
What happens?

See next slide...

Cont’d from previous slide
A simple 2D example

e A circle in model space

y

| matd s = scale({2,2,2});

mat4d t = translate({3,2,0});

RenderCircle (t*s) ; // Effect= first scaling, then translation

mat4 m = translate({8,0,0});
RenderCircle (m) ;

Cont’d from previous slide
A simple 2D example

e A circle in model space

y

| mat4s s = scale({2,2,2});

mat4d t = translate({3,2,0});

RenderCircle (s*t) ; // Effect= first translation, then scaling.
// Each vertex in the'sphere will first
// be translated (3,2,0) and then have its
// coordinate doubled 1n X,y.z

// This 1s less intuitive so humans
// prefer to do scaling first and then
// translation.

Example of a simple GfxObject class

class GfxObject {

public:
load(“filename”); // Creates m_shaderProgram + m_vertexArrayObject
render(mat4 projectionMatrix, mat4 viewMatrix)

{

mat4 modelViewProjectionMatrix = projectionMatrix * viewMatrix *
m_modelMatrix;

int loc = glGetUniformLocation(shaderProgram, "modelViewProjectionMatrix");

glUniformMatrix4fv(loc, 1, false, &modelViewProjectionMatrix[0].x);

glEnableVertexAttribArray(0);
glEnableVertexAttribArray(1);
glUseProgram(m_shaderProgram);
glBindVertexArray(m_vertexArrayObject);

glDrawArrays(GL_TRIANGLES, @, |4 crsion 420 VERTEX SHADER

.}3 layout(location = @) in vec3 position;
private: layout(location = 1) in vec3 color;
mat4 m_modelMatrix;

uint numVertices; out vec4 outColor;

Gluint m_shaderProgram; uniform mat4 modelViewProjectionMatrix;

GLuint m_vertexArrayObject; o) TR
}s {
gl Position = modelViewProjectionMatrix *

vec4(position, 1.0);
outColor = vec4(color, 1.0);

}

Rotation (2D)

Consider rotation about the origin by 0 degrees

—radius stays the same, angle increases by 6

x'=rcos (¢ +0)
/ y'=r1sin (¢ + 0)

x, y) m {: ZM

x, y)
\ X =T1COS

ik y=rsin ¢

Ll

Answer:| x’=x cos 0 —y sin 0
y’=xsin@+ycos0

DerivationfoifiotationimatiaxansZ

104 ch

n=e“p=re‘e

=r[(cosa+isina)(cos@ +isin@)] =

. o n
=r(CosaCcos@ —sIasing) +
: : : AN
ir(cosasin@ +sin ¢ cos Q) o_—ep
In vector form: >

p= (px,py) = (rcos,rsing)’
n=(nx’ny) = (r(cosacos@ —smasing),

r(cosasin@ +sinacos))”

Tomas Akenine-Moéller © 2002

DerivationZbirotationycontic

p=(p.,p,) =(rcosg,rsing)
n=(n,n,)" =(r{cosafosg{sincsin),
(Enaboss +Eosdsing)

n=R p whatisR?

). (2 -y
)7 ”
R

Z

Rotationsiirsiy.

lons, but with a

3x3 matrix
, (cosa —sina 0)
cosay —sina ,
Rz(a)z(,]:Rz(a)z sma cosa O A
siIn@ coso
A 1 0 0)
For X R (¢)=|0 cosa -sma
\0 sma cosa
ForY I (cosa 0 sina)
PR R ()= O 1 0

\—sina 0 cosa

Translations must be simple?

Translation Rotation
72 9?7 9

?7 7 ?7Pp=p+t n=Rp
77 7

e Rotation is matrix mult, translation is add

e \Would be nice if we could only use matrix
multiplications...

e Turn to homogeneous coordinates
e Add a new component to each vector

Homogeneous notation

e A point: p:(. P, D. l)r
e [ranslation becomes:

e Translation of vector: §¥i i
e Also allows for projections (later)

Rotations in 4x4 form

e Just add a row at the bottom, and a

column at the right:
cosa —SIna

SINnX COS
0 0
0 0

R (a)=

e Similarly for Xand Y

0 0
0 0
1 0
0 1

v «v, Yector Product
AREA=VAVE sin O

* Triple Scalar Product

The magnitude of the triple scalar
product 1s equal to the volume of the
parallelepiped formed by the three
vectors Vi, Vg, Vi Vo(VpXV).

Triple Scalar Product
YB X._/('

Volume =Y, Vg Vesinacos B

e Determinant = volume change when the transform is

applied to a unit cube

e det(R) =1 for all rot. matrices (=tripple scal. prod for 3x3 mtx)
e Trace(R) = 1+2cos(alpha) (for 3x3 rot-matrices)

Change of Frames

* How to get the M|, ge1.t0-wor1g Matrix: P=(0,5,0,1) o
d, bx C, O, 0
M la, b, ¢, o] 5 y
model-to-world ~ b 0 3
d, S O O
O O 1 1 model space
- - - > X
world space
. a
The basis vectors a,b.c Z
are expressed in the (Both coordinate systems are right-handed)

world coordinate system

E'g': Pworld = Mm—)w Pmodel = Mm—)w (0959091)T =5b +to

More basic transforms

e Scaling ’ =

e Shear [— “

e Rigid-body: rotation and/or (then) translation

e Concatenation of matrices

e Not commutative, i.e., 124 NE=M B 2

e In , the rotation is done first

e Inverses and rotation about arbitrary axis:
e Rigid body: X' = X" (for 3x3 matrices)

Normal transforms
Not so normal...

LN

e Cannot use same matrix to transform normals

Use:N = (M_I)T instead of M

e M works for rotations and translations, though

The Euler Transform

e Assume the camera or object
looks down the negative z-
axis, with up in the y-direction,
X to the right

e h=head
e p=pitch
e =roll

e Optional
e You may read about Gimbal lock in book, p: 67

e See also
e http://mathworld.wolfram.com/EulerAngles.html

Using Euler transforms

Head:
e Rotate around y-axis

e Recompute x- and z-axes
e By rotating them as vectors

Pitch:
e Rotate around x’-axis
e Recompute y- and z'-axes

Roll:
e Rotate around z’-axis

How do we rotate vectors (axes)
and points around an arbitrary axis?

Quaternions
(Al — (qvﬂqw) — (qx9Qy9qZ9qW)

=iq.+Jq,+kq, +q,
e Extension of imaginary numbers
e Compact+fast representation of rotations

e Focus on unit quaternions:
— Norm (or length):

n(Q)=+/q>+q.+q>+q. =1

e A unit quaternion can be written as:

q=(singu_,cosg) where|u, |=1

Unit quaternions are perfect for
rOtationS! (’i — (Sm ¢uq9cos ¢)

e Compact (4 components)

e Can show that

e ...represents a rotation of
2¢ radians around u, of p

e That is: a unit quaternion represents a
rotation as a rotation axis and an angle
®@ rotate (ux,uy,uz,angle);
® Sce p:76 how to convert g to matrix.

e Interpolation from one quaternion to another is
much simpler, and gives optimal results

Projections
e Orthogonal (parallel) and Perspective

N
Orthogonal projection

e Simple, just skip one coordinate
— Say, we're looking along the z-axis
- Then drop z, and render

Ny
Orthogonal projection
e Not invertible! (determinant is zero)

- i.e., depth information is lost

e For Z-buffering
— It is not sufficient to project to a plane
- Rather, we need to "project” to a box

far
/ —
image plane near

Unit cube: [-1,-1,-1] to [1,1,1]

/
eveéé Unit cube is also used for perspective pro;.
e Simplifies clipping

N
Orthogonal projection

e The "unitcube projection” is invertible

e Simple to derive
— Just a translation and scale

What about those homogenenous
coordinates?

L =(« P, P PW)T

e p.=0 for vectors, and p«=1 for points

e \What if pwis not 1 or 07

e Solution is to divide all components by pw
p=(p./p, p,/p, p.Ip, 1f

e Gives a point again!

e Can be used for projections, as we will
see

e The "arrow’” is the
homogenization process

Perspective projection -

e Again, the determinant is O (not invertible)

e To make the rest of the pipeline the same
as for orhogonal projection:
— project into unit-cube

e Not much different from P,
e Do not collapse z-coord to a plane

Understanding the projection matrix

Sy, Sy» S, —Scaling
a, b — Due to homogenization, this controls asymmetry of the
frustum

c — Keep z-info
-1/d — Perspective division based on p,

OpenGL projection matrix

mat4 projectionMtx = perspective(fov, width / height, near, far);

Quick Repetition of Vector Algebra

Length of vector: HXH = \/ (x2 +y° +z2°)

i i k
V. XVe=iVix Vay Vaz
X X 7 7

Normalizing a vector: x = = Vax Ver Viz
Yot +y?+22) [l

Normal: n= (V1 - VO)X (Vz - Vo)
(usualy needs to be normalized as well)

v.«v, Vector Product
: AREA=VAVE sin 0.
Vi

Cross Product:

* Triple Scalar Product

¢ Perpendicular VeCtOI', Area The magnitude of the triple scalar

. V XV product is equal to the volume of the

* SIn 0. sina=—%—"_& where & is perp. to v, and v, .parallelepiped formed by the three
|Va \ b| vectors Vy, Vg, Vit Vo(VpxVe).

uxv= X (uy v = vy)+ ¥ (1 v = 10 vo) + Z 10 vy = 1y vy), Triple Scalar Product

Va.Vb

vl A,

Dot product: cosa =

Iv.

aeb=(ab +ab, +ab,)

Volume =Y, Vg Vesinoicos

Ray/Plane Intersections

*Ray: r(t)=o+td

* Plane: nex + d = 0; (d=-n*p,) p"-//
 Set x=r(t): /

ne(o+td) +d =0 0

neo-+t(ned) + d = 0

t= (—d —n*0) / (ned) Vec3f rayPlanelntersect(vec3f o,dir, n, d)

{
float t=(-d-n.dot(0)) / (n.dot(dir));

return o + dir*t;

Ulf Assarsson © 2011

See book, p: 780
Line/Line intersection in 2D

or,(s)=o0,+sd, ><

r,(t) = o,+td
.2() 2 2 \/

o ry(s) = ry(t) (1)
e 0,+sd,= 0,+td,(2)

noting that ded=0, [d=(a,b) — d"=(b,-a)]

Sd1’d2l= (0,-04) * dzl — i

td,ed,™ = (04-0,) * dy™

See book, p: 781-782
Line/Line intersection in 3D

e r,(s)=o0,+sd, s, t correspond to ><
o r,(t) =o,+td, closest points

o 1(s)=ry(t) (1) \/

e o0,*+sd;= o,+td, (2)
noting that d x d=0 l(d, xd,)|" = 0 means parallel lines

sd,x d, = (0,-0,) x d, (i.e., cross mult. both sides with d, to drop t)
td,xd, = (04-0,) x d, (i.e., cross mult. both sides with d, to drop s)

=>

s (dyxd,)e(dyx d,)=((0,-04) xd;) *(d;x d,)
t (dyxdy)e(d,x dy)=((04-0;) xdy)*(d;x dy)

S_det(oz—ol,dz,dlxdz) t_det(oz—ol,dl,dlxdz)

H(dl Xdz)Hz H(dl Xdz)Hz

\D) P>
Area and Perimeter POV

For polygon py, ps...p, -
Perimeter = omkrets = sum of length of each
edge in 2D and 3D:

We can understand the formula from using Greens theorem: integrating over

border to get area 1
Choose arbitrary point to integrate from, e.g. Origin (0,0,0) Atn'angle = 5 (Vl X Vz)

Works for non-convex polygons as well

Volume in 3D

The same trick for computing area in 2D can be AA}

used to easily compute the volume in 3D for

triangulated objects
Again, choose arbitrary point-of-integration, e.g. Origin (0,0,0)

With respect to point-of-integration
* For all backfacing triangles, add volume
* For all frontfacing triangles, subtract volume

Works for non-convex objects as well e

a=p,— origin
b =p,— origin
C = p;— origin

tetrahedron =

The sign of the determinant will
automatically handle positive and
negative contribution

Scan Conversion of Line

Segments

 Start with line segment in window
coordinates with integer values for
endpoints

* Assume implementation has a

write pixel function Fo Yol
y=kx+m \\\\,//'
/ = d
k= & /
Ax Sl |
“«AX ——»

DDA Algorithm

* Digital Differential Analyzer

/

7

/(Xpi)’])

- AX

—DDA was a mechanical device for numerical

solution of differential equations

—Line y=kx+ m satisfies differential equation

dy/dx = K = AY/AX = y,-y4/X,-X4
* Along scan line Ax = 1

y=y1l;

For (x=x1; x<=x2,1x++) {
write pixel (x, round(y),
v+=k;

}

line color)

Problem

* DDA = for each x plot pixel at closest y

—Problems for steep lines
/

/

/
l

Using Symmetry

eUsefor1>k=>0

Fork> 1, swap role of xand y
—For each vy, plot closest x

/

/
l

* The problem with DDA is that it uses floats
which was slow in the old days

* Bresenhams algorithm only uses integers

Bresenham’s line drawing
algorithm

The line is drawn between two points (x,, y,)

and (x4, yy) (_)
Slope [= Y1~ Vo (y = kx + m)
(x, —x,)

Each time we step 1 in x-direction, we should increment y with k.
Otherwise the error in y increases with k.

If the error surpasses 0.5, the line has become closer to the next y-
value, so we add 1 to y, simultaneously decreasing the error by 1

function line(x0, x1, y0, y1)
int deltax := abs(x1 - x0)
int deltay := abs(y1 - y0)
real error :=0

real deltaerr := deltay / deltax See also o o . :
inty == y0 http://en.wikipedia.org/wiki/Bresenham's line algorithm
for x from x0 to x1

plot(x,y)

error := error + deltaerr
if error > 0.5
y=y+1
error := error - 1.0 Ulf Assarsson © 2006

Bresenham’s line drawing
algorithm

* Now, convert algorithm to only using integer computations

« Trick: multiply the fractional number, deltaerr, by deltax
— enables us to express deltaerr as an integer.
— The comparison if error>=0.5 is multiplied on both sides by 2*deltax

Old float version:

function line(x0, x1, y0, y1)
int deltax = abs(x1 - x0)
int deltay = abs(y1 - y0)
real error ;=0
real deltaerr := deltay / deltax
inty :=y0
for x from x0 to x1
plot(x,y)
error := error + deltaerr
if error > 0.5
y=y+1
error := error - 1.0

New integer version:

function line(x0, x1, y0, y1)
int deltax = abs(x1 - x0)
int deltay = abs(y1 - y0)
real error := 0
real deltaerr := deltay €———— Multiply by deltax
inty :=y0
for x from x0 to x1
plot(x,y)
error ;= error + deltaerr
if 2*error > deltax =~ € Multiply by 2 deltax

y=y+1 .
error := error - deltax €———— Multiply by deltax
Ulf Assarsson © 2006

Complete Bresenham’s line
drawing algorithm

function line(x0, x1, y0, y1)
boolean steep := abs(y1 - y0) > abs(x1 - x0)

The first case is allowing us to draw
lines that still slope downwards, but

if steep then head in the opposite direction. l.e.,
swap(x0, y0) Swap loop axis swapping the initial points if x0 >
swap(x1, yl) x1.

if x0 > x1 then To draw lines that go up, we check if y0
swap(x0, x1) Swap start and end Zfz 1y1; If s0, we step y by -1 instead
swap(y0, y1) | To be able to draw lines with a slope

less than one, we take advantage
of the fact that a steep line can be
reflected across the line y=x to
obtain a line with a small slope. The

int deltax ;= x1 - x0
int deltay := abs(y1 - y0)
int error :=0

int ystep effect is to switch the x and y
inty =y0 variables.
1f yO <yl then ystep := 1 else ystep := -1
for x from x0 to x1
if steep then plot(y,x) else plot(x,y) ><

error := error + deltay
if 2xerror > deltax

y =y t+ystep
error := error - deltax UIf Assarsson © 2006

You need to know

— How to create a simple Scaling matrix, rotation matrix,
translation matrix and orthogonal projection matrix

— Change of frames (creating model-to-view matrix)
— Understand how quaternions are used

— Understanding of Euler transforms

— DDA line drawing algorithm

— Understand what is good with Bresenhams line
drawing algorithm, i.e., uses only integers.

The following slides are simply extra non-
compulsory material that explains the content of the
lecture 1n a different way.

Most of the following slides are
from
Ed Angel

Professor of Computer Science,

Electrical and Computer Engineering,
and Media Arts

University of New Mexico

Scalars

* Need three basic elements 1in geometry
—Scalars, Vectors, Points

 Scalars can be defined as members of sets which
can be combined by two operations (addition and
multiplication) obeying some fundamental axioms
(associativity, commutivity, Inverses)

« Examples include the real and complex number
systems under the ordinary rules with which we are
familiar

» Scalars alone have no geometric properties

Vector Operations

 Physical definition: a vector 1s a quantity with two attributes
— Direction
— Magnitude
« Examples include
— Force
— Velocity
— Directed line segments
* Most important example for graphics
« Can map to other types. Every vector can be multiplied by a scalar.

* There 1s a zero vector
—Zero magnitude, undefined orientation
* The sum of any two vectors 1s a vector

Vectors LLack Position

* These vectors are 1dentical
—Same length and magnitude

e

%

* Vectors insufficient for geometry
—Need points

Points

* Location 1n space

* Operations allowed between points and
vectors
—Point-point subtraction yields a vector

—Equivalent to point-vector addition

P
v=P-Q

P=v+Q

Affine Spaces

* Point + a vector space

* Operations
—Vector-vector addition
—Scalar-vector multiplication
—Point-vector addition
—Scalar-scalar operations
 For any point define
—1+P=P

—0 » P =0 (zero vector)

[Lines

 Consider all points of the form
—P(a)=P,+a d
—Set of all points that pass through P, in the
direction of the vector d

Pl

Parametric Form

* This form 1s known as the parametric form
of the line

—More robust and general than other forms
—Extends to curves and surfaces

e Two-dimensional forms
—Explicit: y =kx + m

—Implicit: ax + by +c¢ =0
—Parametric:
x(a) = ax, + (1-a)x,
y(o) = ay, + (I-a)y,

Rays and Line Segments

If o >= 0, then P(a) 1s the ray leaving P, in
the direction d

If we use two points to define v, then

P(a)=Q + a (R-Q)=Q+av] /.';;ia)
=aR + (1-0)Q R
For 0<=a<=1 we get all the
points on the /ine segment

jomning R and Q Q@

Planes

* A plane can be defined by a point and two

vectors or by three points b

R u R

P(a,B)=R+ou+pv P(a.,p)=R+a(Q-R)+B(P-Q)

Triangles

.~ [, convex sum of S(a) and R

/, \\
convex sumofPand Q -7 /

,’,/ T(Oﬁ,ﬁ) \\
7 \

P S{al) Q

for 0<=q0,3<=1, we get all points 1n triangle

Normals

 Every plane has a vector n normal (perpendicular,
orthogonal) to 1t

e From point/vector form
— P(a,B)=R+ou+Pv
we know we can use the cross product to find
—nNn=u XV
 Plane equation:
—n-x—d=0,
—where d = -n -p and p is any point in the plane

- 5

A%

Normal for Triangle

n

plane n-(p-p,)=0 |)

n=(p,-py) *(P;-Po)

normalize n <« n/ |n| Po 1

Note that right-hand rule determines outward face

Convexity

* An object 1s convex 1t for any two points in
the object all points on the line segment
between these points are also in the object

not convex

convex

Affine Sums

 Consider the “sum”

P=ao,P,+o,P,+.....4a P,

Can show by induction that this sum makes
sense 1t

o ta,o =1

in which case we have the affine sum of the
points P,,P,,.....P_

e If, 1n addition, a,>=0, we have the convex
hull of P,,P,,.....P_

Convex Hull

Consider the linear combination
P=o,P,+a,P,+.....+0 P,
o If o, Fo,t.....0 =1
— (in which case we have the affine sum of the points P,,P,,.....P,)
and 1f o >=0, we have the convex hull of P,P,,.....P_
« Smallest convex object
containing P,P,,.....P

n

Frames

* A coordinate system 1s insufficient to
represent points

* If we work 1n an affine space we can add a
single point, the origin, to the basis vectors
to form a frame

Representing one basis 1n terms
of another

Each of the basis vectors, ul,u2, u3, are vectors that

can be represented 1n terms o, "
b

U =Y VitY12VaTY13V3 / ey
Uy = Y21V TY22VoTY23V3

U3 = Y31V TY3,V Y33 V3

Matrix Form

The coefficients define a 3 x 3 matrix

Yiu Y2 Vi3)
M= V21 Yoo Vo
| V31 Va2 Va3

and the bases can be related by
a=M'b

Translation

* Move (translate, displace) a point to a new
location o

 Displacement determined by a vector d

—Three degrees of freedom
—P’=P+d

How many ways?

Although we can move a point to a new location 1n
infinite ways, when we move many points there 1s
usually only one way

translation: every point displaced
by same vector

Translation Using
Representations

Using the homogeneous coordinate
representation in some frame

p={xyz 1]
p=[xy 7 1"

d=[dx dy dz 0]"
Hence p’=p +dor note that this expression is in

four dimensions and expresses
point = vector + point

X =x+dX

y'=y+d,
z’=z+d,

Translation Matrix

We can also express translation using a
4 x 4 matrix T 1n homogeneous coordinates

p’=Tp where 1 0 0 d,
01 0 d,
00 1 d
T=ldeded)= 19 0 0 1

This form 1is better for implementation because all affine
transformations can be expressed this way and multiple
transformations can be concatenated together

Homogeneous Coordinates

The homogeneous coordinates form for a three dimensional
point [X y z] 1S glven as

p=[xX"y z W] T =[WX wy wz W] T

We return to a three dimensional point (for w#0) by

XX’ /W

y<y’/w

7«7’ /W

If w=0, the representation is that of a vector

Note that homogeneous coordinates replaces points in three
dimensions by lines through the origin in four dimensions

For w=1, the representation of a pointis [Xx y z 1]

Homogeneous Coordinates
and Computer Graphics

 Homogeneous coordinates are key to all
computer graphics systems

—All standard transformations (rotation,
translation, scaling) can be implemented with
matrix multiplications using 4 x 4 matrices

—Hardware pipeline works with 4 dimensional
representations

—For orthographic viewing, we can maintain w=0
for vectors and w=1 for points

—For perspective we need a perspective division

Rotation about the z axis

* Rotation about z axis in three dimensions leaves all
points with the same z

—Equivalent to rotation in two dimensions in
planes of constant z

X’=X cos O —y sin O
y’=xsm0b+ycosH
Z =7

—or 1n homogeneous coordinates
p=R,(0)p

Rotation Matrix

R=R (0) =

' cos 0
sin O
0

0

—-sin® 0 0
cosO 0 O
0 1 O
0 0 1

Rotation about x and y axes

e Same argument as for rotation about z axis
—For rotation about x axis, x 1s unchanged
—For rotation about y axis, y 1s unchanged

1 0 0 0
0 cos® -sm0O O

R= RX(G) 10 sin® cos® 0
0 0 0 1
[cos®O 0 sin6 O

R = Ry(e) _ 0 1 0 0
-sin® 0 cosO O
0 0 0 1

Scaling

Expand or contract along each axis (fixed point of origin)

X’=8,X
y'=s,X
Z’=8 X
p’=Sp
s, 0 0
S =S(s,, Sy, S,) = =
G270 0 s o ‘,
0 0 0 1

Reflection

corresponds to negative scale factors

y
A
5 &
. - e
s, =-1s,=1 Ff{ - f’ | original

NG
w2
>
|
[G—
w2
<
|

s, =-1s,=-1 &)
X y E%

Inverses

* Although we could compute inverse matrices by
general formulas, we can use simple geometric
observations

—Translation: T-(d,, d,, d,) =T(-d,, -d,, -d,)
—Rotation: R “1(0) = R(-0)
* Holds for any rotation matrix
* Note that since cos(-0) = cos(0) and sin(-
0)=-s1n(0)
R(0)=R'(0)

—Scaling: S-'(s,, s, s,) =S(1/s, 1/s,, 1/s,)

y? S,

Concatenation

* We can form arbitrary affine transformation
matrices by multiplying together rotation,
translation, and scaling matrices

* Because the same transformation 1s applied to
many vertices, the cost of forming a matrix
M=ABCD is not significant compared to the cost
of computing Mp for many vertices p

 The difficult part 1s how to form a desired
transformation from the specifications in the
application

Order of Transtormations

* Note that matrix on the right is the first
applied
* Mathematically, the following are equivalent
p’ = ABCp = A(B(Cp))
* Note many references use column matrices

to represent points. In terms of column
matrices

p’T — pTCTBTAT

General Rotation About the
Origin

A rotation by 6 about an arbitrary axis
can be decomposed into the concatenation
of rotations about the x, y, and z axes

R(0) = R,(0,) R,(0,) R,(0,)

0, 0,0, are called the Euler angles 0

Note that rotations do not commute

We can use rotations in another order but

with different angles .

Rotation About a Fixed Point
other than the Origin

Move fixed point to origin
Rotate
Move fixed point back

M = T(pg) R(0) T(-py)

. Py
o °
> P,
—_— — —

]
VAW AvWan

LN

y
A

Instancing

 In modeling, we often start with a simple
object centered at the origin, oriented with
the axis, and at a standard size

* We apply an instance transformation to 1ts
vertices to T T

Scale s ‘ v
Orient

Locate

Shear

 Helpful to add one more basic transformation

« Equivalent to pulling faces in opposite directions

o F

Shear Matrix

Consider simple shear along x axis

y
A

+ycot0

(x', v')
e

(x, y)
e

X' =X
9

y =Yy

7'=17

I ,/

: Py

1 ¥

I ,/

L \9

|

' X

cot O

H(0) =

Computer Viewing

Ed Angel

Professor of Computer Science,

Electrical and Computer Engineering,
and Media Arts

University of New Mexico

Objectives

* Introduce the mathematics of projection

Computer Viewing

* There are three aspects of the viewing
process, all of which are implemented 1n the
pipeline,

—Positioning the camera

e Setting the model-view matrix
—Selecting a lens

e Setting the projection matrix
—Clipping

e Setting the view volume

e (default is unit cube, R?, [-1,1])

Default Projection

Default projection 1s orthogonal

clipped out
/

v

1
Jmmte e ———— X

| Projection plane z=0

Moving the Camera Frame

* [f we want to visualize object with both positive and
negative z values we can either

—Move the camera 1n the positive z direction
* Translate the camera frame
—Move the objects 1n the negative z direction

* Translate the world frame

* Both of these views are equivalent and are
determined by the model-view matrix

Moving the Camera

* We can move the camera to any desired
position by a sequence of rotations and

translations ,

* Example: side view A

—Rotate the camera

—Move 1t away from origin
- X

—Model-view matrix C = TR i/’
R

Z.

OpenGL Orthogonal Viewing

&

y [n‘gh!, fop, -For)
‘ /]
=far

/~View volume

Z=-near

A
\ -
(left, bottom, -near)

near and far measured from camera

OpenGL Perspective

Yy /] Z=rfar
A z=near
) L “[right, top,-near]

~{loft, bottom,-near)

- X

Using Field of View

e Parameters fovy, aspect, near, far often
provides a better interface

, «— front plane

—

aspect = w/h

fov

Projections explained differently

* Read the following slides about orthogonal
and perspective projections by your selves

* They present the same thing, but explained
differently

Projections and Normalization

* The default projection in the eye (camera) frame
1s orthogonal

* For points within the default view volume

Xp—X

Yp =Y
z,=0
* Most graphics systems use view normalization

—All other views are converted to the default view by
transformations that determine the projection matrix

—Allows use of the same pipeline for all views

Homogeneous Coordinate
Representation

default orthographic projection

p,=Mp

_—0 O O

o o o
SO = O
o O O O

In practice, we can let M =1 and set
the z term to zero later

Simple Perspective

* Center of projection at the origin
* Projection plane z=d, d <0

Yy
f %7, 2
o

(xp, Yor zp)
- X

Perspective Equations

Consider top and side views

i

x, z)

(Xp'd) : ly, z)

Homogeneous Coordinate Form

1 0 0 O
mMm=(0 1 0 O
consider q = Mp where 0 0 1 0
0 0 1/d 0
x T
q-= Y = P~ ’
z Z
1 z/d

Perspective Division

 However w # 1, so we must divide by w to
return from homogeneous coordinates

* This perspective division yields

Ap - Vo~ Y z,=d

z/d z/d P

the desired perspective equations

* We will consider the corresponding clipping
volume with the OpenGL functions

Normalization

e Rather than derive a different projection
matrix for each type of projection, we can
convert all projections to orthogonal
projections with the default view volume

* This strategy allows us to use standard
transformations in the pipeline and makes for
efficient clipping

Pipeline View

modelview
transformation

projection

———»

transformation

nonsingula/

| perspective

division

4D — 3D

against default cube

> | clipping |— | projection —

3D —> 2D

Notes

* We stay 1n four-dimensional homogeneous
coordinates through both the modelview and
projection transformations

—Both these transformations are nonsingular
—Default to identity matrices (orthogonal view)

* Normalization lets us clip against simple cube
regardless of type of projection

* Delay final projection until end

—Important for hidden-surface removal to retain
depth information as long as possible

Orthogonal Normalization

normalization = find transformation to convert
specified clipping volume to default

(right,top,-far)
“ ’ 1 l_])

@
(left, bottom,-near) (-1,-1,1)

Orthogonal Matrix

* Two steps
—Move center to origin
T(-(left+right)/2, -(bottom-+top)/2,(near+far)/2))
—Scale to have sides of length 2
S(2/(left-right),2/(top-bottom),2/(near-far))

2 0 0 _ right —left |
right — left right —left
0 2 0 _ top +bottom
P=ST-= top —bottom top —bottom
0 0 2 far + near
near — far far —near
0 0 0 1

Final Projection

e Set z=0

* Equivalent to the homogeneous coordinate
transformation

1 0 0 O
O 1 0 O
Morth: 0 0 0 0
00 0 1]

* Hence, general orthogonal projection in 4D 1s

P= MorthST

top view

y General Shear

A

Back clipping plane
Obiject

i

T Front clipping plane

\

Projection plane
\ DOP

- X

DOP = Direction of Projection

(z, ¥

N~

side view

Z

Shear Matrix

xy shear (z values unchanged)

1 0 —cot6 O

HO,0)= |0 1 —cote O
0 0 1 0

00 0 1

Projection matrix
P=M,, H(0,9)
General case: p=M_, STH(9,0)

Effect on Clipping

* The projection matrix P = STH transforms
the original clipping volume to the default
clipping volume

object top view z=1
DOP '
., ‘ DOP
/ . O
x=-1
/ \ far plane \ ¥ =1 '
i, z=-1
CUPPINE pear plane : ~
volume p distorted object

(projects correctly)

Simple Perspective

Consider a simple perspective with the COP (=center
of projection) at the origin, the near clipping plane at
z=-1, and a 90 degree field of view determined by
the planes

xX=xz,y =1z

A / z = -far

(—.l ’ —.l ’ —.l)\ ////”/////

Perspective Matrices

Simple projection matrix in homogeneous

coordinates 1 0 0 O

1 0 O
0O 1 O
0 -1 0

M:

0
0
_O —

Note that this matrix 1s independent of the far
clipping plane

Generalization

R O O

oo O =
oS o = O
S o O O

after perspective division, the point (x, y, z, 1) goes to

X" =x/z
y ' =yz
7" =-(a+p/z)

which projects orthogonally to the desired point
regardless of a and 3

Picking o and [3

If we pick
near + far
a j—
far —near
B 2near * far
near — far

the near plane is mapped to z = -1
the far plane is mapped to z =1
and the sides are mappedtox=+1,y=%1

Hence the new clipping volume is the default clipping volume

Normalization Transtformation

distorted object
z=x projects correctly

. o

z = -far \]
\< / . e
Z = -near e
\)< 4
original c&p / K

clipping original object new clipping
volume volume

Normalization and

Hidden-Surface Removal

 Although our selection of the form of the
perspective matrices may appear somewhat
arbitrary, it was chosen so that if z; > z, 1n the
original clipping volume then the for the
transformed points z,” > z,’

 Thus hidden surface removal works 1f we first apply
the normalization transformation

 However, the formula z>’ = -(a+p/z) implies that the
distances are distorted by the normalization which
can cause numerical problems especially if the near
distance 1s small

OpenGL Perspective

* Unsymmetric viewing frustum possible:

Z o)
max’ ymax' mdaXx

(Xmin' Y min Zmax) 4]

COP

OpenGL Perspective Matrix

* The normalization by a perspective projection
requires an 1nitial shear to form a right
viewing pyramid, followed by a scaling to get
the normalized perspective volume. Finally,
the perspective matrix results in needing only
a final orthogonal transformation

P =NSH

our previously defined shear and scale
perspective matrix

Why do we do it this way?

* Normalization allows for a single pipeline
for both perspective and orthogonal viewing

* We stay 1n four dimensional homogeneous
coordinates as long as possible to retain
three-dimensional information needed for
hidden-surface removal and shading

* We simplify clipping

